Di-CNN: Domain-Knowledge-Informed Convolutional Neural Network for Manufacturing Quality Prediction

Autor: Guo, Shenghan Guo, Dali Wang, Zhili Feng, Jian Chen, Weihong
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors; Volume 23; Issue 11; Pages: 5313
ISSN: 1424-8220
DOI: 10.3390/s23115313
Popis: In manufacturing, convolutional neural networks (CNNs) are widely used on image sensor data for data-driven process monitoring and quality prediction. However, as purely data-driven models, CNNs do not integrate physical measures or practical considerations into the model structure or training procedure. Consequently, CNNs’ prediction accuracy can be limited, and model outputs may be hard to interpret practically. This study aims to leverage manufacturing domain knowledge to improve the accuracy and interpretability of CNNs in quality prediction. A novel CNN model, named Di-CNN, was developed that learns from both design-stage information (such as working condition and operational mode) and real-time sensor data, and adaptively weighs these data sources during model training. It exploits domain knowledge to guide model training, thus improving prediction accuracy and model interpretability. A case study on resistance spot welding, a popular lightweight metal-joining process for automotive manufacturing, compared the performance of (1) a Di-CNN with adaptive weights (the proposed model), (2) a Di-CNN without adaptive weights, and (3) a conventional CNN. The quality prediction results were measured with the mean squared error (MSE) over sixfold cross-validation. Model (1) achieved a mean MSE of 6.8866 and a median MSE of 6.1916, Model (2) achieved 13.6171 and 13.1343, and Model (3) achieved 27.2935 and 25.6117, demonstrating the superior performance of the proposed model.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje