Autor: |
Volk, Benedikt Kirchebner, Maximilian Ploetz, Christoph Rehekampff, Philipp Lechner, Wolfram |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Materials; Volume 14; Issue 15; Pages: 4072 |
ISSN: |
1996-1944 |
DOI: |
10.3390/ma14154072 |
Popis: |
Like most additive manufacturing processes for metals, material jetting processes require support structures in order to attain full 3D capability. The support structures have to be removed in subsequent operations, which increases costs and slows down the manufacturing process. One approach to this issue is the use of water-soluble support structures made from salts that allow a fast and economic support removal. In this paper, we analyze the influence of salt support structures on material jetted aluminum parts. The salt is applied in its molten state, and because molten salts are typically corrosive substances, it is important to investigate the interaction between support and build material. Other characteristic properties of salts are high melting temperatures and low thermal conductivity, which could potentially lead to remelting of already printed structures and might influence the microstructure of aluminum that is printed on top of the salt due to low cooling rates. Three different sample geometries have been examined using optical microscopy, confocal laser scanning microscopy, energy-dispersive X-ray spectroscopy and micro-hardness testing. The results indicate that there is no distinct influence on the process with respect to remelting, micro-hardness and chemical reactions. However, a larger dendrite arm spacing is observed in aluminum that is printed on salt. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|