Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities

Autor: S., Rakesh Kumar Parmar, Junesang Choi, Saravanan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Symmetry; Volume 15; Issue 6; Pages: 1132
ISSN: 2073-8994
DOI: 10.3390/sym15061132
Popis: This paper introduces extensions H4,p and X8,p of Horn’s double hypergeometric function H4 and Exton’s triple hypergeometric function X8, taking into account recent extensions of Euler’s beta function, hypergeometric function, and confluent hypergeometric function. Among the numerous extended hypergeometric functions, the primary rationale for choosing H4 and X8 is their comparable extension type. Next, we present various integral representations of Euler and Laplace types, Mellin and inverse Mellin transforms, Laguerre polynomial representations, transformation formulae, and a recurrence relation for the extended functions. In particular, we provide a generating function for X8,p and several bounding inequalities for H4,p and X8,p. We explore the utilization of the H4,p function within a probability distribution. Most special functions, such as the generalized hypergeometric function, the Beta function, and the p-extended Beta integral, exhibit natural symmetry.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje