Determinantal Expressions, Identities, Concavity, Maclaurin Power Series Expansions for van der Pol Numbers, Bernoulli Numbers, and Cotangent

Autor: Qi, Zhen-Ying Sun, Bai-Ni Guo, Feng
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Axioms; Volume 12; Issue 7; Pages: 665
ISSN: 2075-1680
DOI: 10.3390/axioms12070665
Popis: In this paper, basing on the generating function for the van der Pol numbers, utilizing the Maclaurin power series expansion and two power series expressions of a function involving the cotangent function, and by virtue of the Wronski formula and a derivative formula for the ratio of two differentiable functions, the authors derive four determinantal expressions for the van der Pol numbers, discover two identities for the Bernoulli numbers and the van der Pol numbers, prove the increasing property and concavity of a function involving the cotangent function, and establish two alternative Maclaurin power series expansions of a function involving the cotangent function. The coefficients of the Maclaurin power series expansions are expressed in terms of specific Hessenberg determinants whose elements contain the Bernoulli numbers and binomial coefficients.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje