Autor: |
Rowe, Imran Moez Khan, Andrew Thompson, Akram Al-Hourani, Kandeepan Sithamparanathan, Wayne S. T. |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Future Internet; Volume 15; Issue 6; Pages: 220 |
ISSN: |
1999-5903 |
DOI: |
10.3390/fi15060220 |
Popis: |
Complementing RSSI measurements at anchors with onboard smartphone accelerometer measurements is a popular research direction to improve the accuracy of indoor localization systems. This can be performed at different levels; for example, many studies have used pedestrian dead reckoning (PDR) and a filtering method at the algorithm level for sensor fusion. In this study, a novel conceptual framework was developed and applied at the data level that first utilizes accelerometer measurements to classify the smartphone’s device pose and then combines this with RSSI measurements. The framework was explored using neural networks with room-scale experimental data obtained from a Bluetooth low-energy (BLE) setup. Consistent accuracy improvement was obtained for the output localization classes (zones), with an average overall accuracy improvement of 10.7 percentage points for the RSSI-and-device-pose framework over that of RSSI-only localization. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|