Mixed Isogeometric Analysis of the Brinkman Equation

Autor: Scutaru, Lahcen El Ouadefli, Omar El Moutea, Abdeslam El Akkad, Ahmed Elkhalfi, Sorin Vlase, Maria Luminița
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics; Volume 11; Issue 12; Pages: 2750
ISSN: 2227-7390
DOI: 10.3390/math11122750
Popis: This study focuses on numerical solution to the Brinkman equation with mixed Dirichlet–Neumann boundary conditions utilizing isogeometric analysis (IGA) based on non-uniform rational B-splines (NURBS) within the Galerkin method framework. The authors suggest using different choices of compatible NURBS spaces, which may be considered a generalization of traditional finite element spaces for velocity and pressure approximation. In order to investigate the numerical properties of the suggested elements, two numerical experiments based on a square and a quarter of an annulus are discussed. The preliminary results for the Stokes problem are presented in References.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje