Vibronic and Cationic Features of 2-Fluorobenzonitrile and 3-Fluorobenzonitrile Studied by REMPI and MATI Spectroscopy and Franck–Condon Simulations

Autor: Jia, Shuxian Li, Yan Zhao, Yuechun Jiao, Jianming Zhao, Changyong Li, Suotang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Molecules; Volume 28; Issue 12; Pages: 4702
ISSN: 1420-3049
DOI: 10.3390/molecules28124702
Popis: Fluorinated organic compounds have superior physicochemical properties than general organic compounds due to the strong C-F single bond; they are widely used in medicine, biology, pesticides, and materials science. In order to gain a deeper understanding of the physicochemical properties of fluorinated organic compounds, fluorinated aromatic compounds have been investigated by various spectroscopic techniques. 2-fluorobenzonitrile and 3-fluorobenzonitrile are important fine chemical intermediates and their excited state S1 and cationic ground state D0 vibrational features remain unknown. In this paper, we used two-color resonance two photon ionization (2-color REMPI) and mass analyzed threshold ionization (MATI) spectroscopy to study S1 and D0 state vibrational features of 2-fluorobenzonitrile and 3-fluorobenzonitrile. The precise excitation energy (band origin) and adiabatic ionization energy were determined to be 36,028 ± 2 cm−1 and 78,650 ± 5 cm−1 for 2-fluorobenzonitrile and 35,989 ± 2 cm−1 and 78,873 ± 5 cm−1 for 3-fluorobenzonitrile, respectively. The density functional theory (DFT) at the levels of RB3LYP/aug-cc-pvtz, TD-B3LYP/aug-cc-pvtz, and UB3LYP/aug-cc-pvtz were used to calculate the stable structures and vibrational frequencies for the ground state S0, excited state S1, and cationic ground state D0, respectively. Franck–Condon spectral simulations for transitions of S1 ← S0 and D0 ← S1 were performed based on the above DFT calculations. The theoretical and experimental results were in good agreement. The observed vibrational features in S1 and D0 states were assigned according to the simulated spectra and the comparison with structurally similar molecules. Several experimental findings and molecular features were discussed in detail.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje