Popis: |
Light-driven electrophoretic micromotors have gained significant attention recently for applications in drug delivery, targeted therapy, biosensing, and environmental remediation. Micromotors that possess good biocompatibility and the ability to adapt to complex external environments are particularly attractive. In this study, we have fabricated visible light-driven micromotors that could swim in an environment with relatively high salinity. To achieve this, we first tuned the energy bandgap of rutile TiO2 that was hydrothermally synthesized, enabling it to generate photogenerated electron-hole pairs under visible light rather than solely under UV. Next, platinum nanoparticles and polyaniline were decorated onto the surface of TiO2 microspheres to facilitate the micromotors swimming in ion-rich environments. Our micromotors exhibited electrophoretic swimming in NaCl solutions with concentrations as high as 0.1 M, achieving a velocity of 0.47 μm/s without the need for additional chemical fuels. The micromotors’ propulsion was generated solely by splitting water under visible light illumination, therefore offering several advantages over traditional micromotors, such as biocompatibility and the ability to operate in environments with high ionic strength. These results demonstrated high biocompatibility of photophoretic micromotors and high potential for practical applications in various fields. |