Formation Features of Polymer–Metal–Carbon Ternary Electromagnetic Nanocomposites Based on Polyphenoxazine

Autor: Karpacheva, Sveta Ozkan, Valeriy Petrov, Andrey Vasilev, Petr Chernavskii, Mikhail Efimov, Dmitriy Muratov, Galina Pankina, Galina
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Polymers; Volume 15; Issue 13; Pages: 2894
ISSN: 2073-4360
DOI: 10.3390/polym15132894
Popis: Novel ternary hybrid polyphenoxazine (PPOA)-derived nanocomposites involving Co-Fe particles and single-walled (SWCNTs) or multi-walled (MWCNTs) carbon nanotubes were prepared and investigated. An efficient one-pot method employing infrared (IR) heating enabled the formation of Co-Fe/CNT/PPOA nanocomposites. During this, the dehydrogenation of phenoxazine (POA) units led to the simultaneous reduction of metals by released hydrogen, yielding bimetallic Co-Fe particles with a size range from the nanoscale (5–30 nm) to the microscale (400–1400 nm). The synthesized Co-Fe/CNT/PPOA nanomaterials exhibited impressive thermal stability, demonstrating a half-weight loss at 640 °C and 563 °C in air for Co-Fe/SWCNT/PPOA and Co-Fe/MWCNT/PPOA, respectively. Although a slightly broader range of saturation magnetization values was obtained using MWCNTs, it was found that the type of carbon nanotube, whether an SWCNT (22.14–41.82 emu/g) or an MWCNT (20.93–44.33 emu/g), did not considerably affect the magnetic characteristics of the resulting nanomaterial. By contrast, saturation magnetization escalated with an increasing concentration of both cobalt and iron. These nanocomposites demonstrated a weak dependence of electrical conductivity on frequency. It is shown that the conductivity value for hybrid nanocomposites is higher compared to single-polymer materials and becomes higher with increasing CNT content.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje