Glucose Transporter-2 Regulation of Male versus Female Hypothalamic Astrocyte MAPK Expression and Activation: Impact of Glucose

Autor: Briski, Madhu Babu Pasula, Sagor C. Roy, Khaggeswar Bheemanapally, Paul W. Sylvester, Karen P.
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Neuroglia; Volume 4; Issue 3; Pages: 158-171
ISSN: 2571-6980
DOI: 10.3390/neuroglia4030011
Popis: The plasma membrane glucose transporter (GLUT)-2 is unique among GLUT family proteins in that it also functions as a glucose sensor. GLUT2 imposes sex-dimorphic control of hypothalamic astrocyte glucose storage and catabolism by unknown mechanisms. Mitogen-activated protein kinase (MAPK) signaling cascades operate within stress-sensitive signal transduction pathways. The present study employed an established primary astrocyte culture model and gene knockdown tools to investigate whether one or more of the three primary MAP kinase families are regulated by GLUT2. GLUT2 gene knockdown caused opposing adjustments in total ERK1/2 proteins in glucose-supplied male versus female astrocytes, augmenting or reducing the mean phosphorylated/total protein ratio for 44 and 42 kDa variants in these sexes. Glucose deprivation amplified this ratio for both ERK1/2 variants, albeit by a larger magnitude in males; GLUT2 siRNA exacerbated this stimulatory response in males only. Phosphorylated/total p38 MAPK protein ratios were up-regulated by GLUT2 knockdown in male, but not female astrocytes. Glucose-deprived astrocytes exhibited no change (male) or reduction (female) in this ratio after GLUT2 gene silencing. GLUT2 siRNA increased the phosphorylated/total protein ratio for 54 and 46 kDa SAPK/JNK proteins in each sex when glucose was present. However, glucose withdrawal suppressed (male) or amplified (female) these ratios, while GLUT2 knockdown attenuated these inverse responses. The results show that GLUT2 inhibits ERK1/2, p38, and SAPK/JNK MAPK activity in male astrocytes, but differentially stimulates and inhibits activity of these signaling pathways in female hypothalamic astrocytes. Glucoprivation induces divergent adjustments in astrocyte p38 MAPK and SAPK/JNK activities. The findings demonstrate a stimulatory role for GLUT2 in p38 MAPK activation in glucose-starved female astrocytes, but it can act as either an inhibitor or inducer of SAPK/JNK activation in glucose-deprived male versus female glial cells, respectively.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje