Deriving Euler’s Equation for Rigid-Body Rotation via Lagrangian Dynamics with Generalized Coordinates

Autor: Kouba, Dennis S. Bernstein, Ankit Goel, Omran
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics; Volume 11; Issue 12; Pages: 2727
ISSN: 2227-7390
DOI: 10.3390/math11122727
Popis: Euler’s equation relates the change in angular momentum of a rigid body to the applied torque. This paper uses Lagrangian dynamics to derive Euler’s equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as well as Euler parameters, that is, quaternions. This paper fills a gap in the literature by using generalized coordinates to parameterize the angular velocity vector and thereby transform the dynamics obtained from Lagrangian dynamics into Euler’s equation for rigid-body rotation.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje