Popis: |
In this paper, three types of optical textured glass substrates were prepared at the glass/transparent conductive oxide interface using polydimethylsiloxane nanoimprint lithography to increase the conversion efficiency of dye-sensitized solar cells (DSSCs). There were three types of textures: nanotexture, microtexture, and micro/nano double texture. In terms of optical characteristics, it was confirmed that the reflectance of all of the textured glass substrates was lower than that of flat glass in the mean value of the 400–800 nm wavelength band. Further, the diffuse transmittance was higher than that of flat glass for all of the textured glass substrates, and the D-Tx was particularly high. DSSCs were fabricated using N749 and N719 dyes; their size was 6 mm2. The conversion efficiencies of the N749 DSSCs were improved by 11% for the N-Tx (η of 2.41%) and 10% for the D-Tx (η of 2.38%) compared with flat glass (η of 2.17%) DSSCs. On the other hand, the M-Tx did not improve it. The conversion efficiencies of the N719 DSSCs with textured glass substrates were improved by 7.5% for the M-Tx (η of 2.74%), 18% for the N-Tx (η of 3.01%), and 26% for the D-Tx (η of 3.22%) compared with flat glass (η of 2.55%) DSSCs. |