Quaternion and Euler Angles in Kinematics

Autor: YAMAGUCHI, Isao, KIDA, Takashi, OKAMOTO, Osamu, OOKAMI, Yoshiaki
Jazyk: japonština
Rok vydání: 1991
Předmět:
Zdroj: 航空宇宙技術研究所資料 = Technical Memorandum of National Aerospace Laboratory. 636:15
ISSN: 0452-2982
Popis: 本資料は剛体の運動方程式におけるクオータニオンによるキネマティックス表現についてまとめたものである。クオータニオンは4つのパラメータで構成され,物体のオリエンテーションを規定するものであり,オイラー・パラメータ,4元数とも呼ばれる。本資料ではまず座標系やベクトル量が定義された後,クオータニオンが導入される。従来の手法であるオイラー角による物体の姿勢の記述方法と比較しながら,方向余弦行列との関連や物体の角速度ベクトルによるクオータニオンの微分方程式の構成など,クオータニオンの様々な特徴について計算機プログラムのためのアルゴリズムを念頭において考察する。最後に剛体の運動方程式の中でクオータニオンがどのように組み込まれて剛体のキネマティックスを表現するのかについて論じる。
A summary of quaternion in the kinematics of rigid body dynamics is presented. Quaternion is a four-parameter system for specifying the orientation of a rigid body. Four parameters of quaternion are updated by integrating linear differential equations whose coefficients are the angular velocity of the body. After describing the coordinate systems and vectors, quatemion is introduced. Then, using a comparison with the Euler angles, typical presentation of body orientation and the relationships betweenquatermion and angular velocity are discussed. Finally, a computer simulation algorithm is deriverd to solve rigid body dynamics using quatermion.
資料番号: NALTM0636000
レポート番号: NAL TM-636
Databáze: OpenAIRE