Non-Periodic Gait Planning Based on Salient Region Detection for a Planetary Cave Exploration Robot

Autor: Uno, Kentaro, Koizumi, Yusuke, Haji, Keigo, Keiff, Maximilian, Harms, Simon, Ribeiro, Warley F. R., Jones, William, Nagaoka, Kenji, Yoshida, Kazuya
Jazyk: angličtina
Rok vydání: 2020
Popis: A limbed climbing robot can traverse uneven and steep terrain, such as Lunar/Martian caves. Towards the autonomous operation of the robot, we first present a method to detect topographically salient regions in 3D point cloud as the robot ’s graspable targets, and next, we introduce a strategy to plan a non-periodic gait for the robot from the detected discrete graspable options. The proposed gait planner is implemented and validated in our open dynamic climbing robot simulation platform assuming the 3 kg class four-limbed climbing robot testbed moving over steep and uneven Lunar terrain.
International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2020), October 19-23, 2020, Los Angles, CA, USA(新型コロナ感染拡大に伴い、オンライン開催に変更)
Databáze: OpenAIRE