ダイズ群落内における光環境が収量と収量構成要素に及ぼす影響

Jazyk: japonština
Rok vydání: 2000
Popis: 作物個体群において, 群体内の光の利用を高めることは, 一般に乾物生産, および収量の増加につながる. ダイズ栽培では, 群落受光量は草型や栽植様式の違いによる受光態勢によって決定されるが, 水平葉を持つダイズは, 相互遮蔽が起こりやすい群落構造を示すことが多い. そのため, 光の利用効率は乾物生産に大きな影響を与える. また, 生殖生長期間を通じて光を受け止める個葉の光合成速度が高まることで, 高い乾物生産を可能にする. ダイズは子実に多くのタンパク質を含み, その生産過程は主に子実への窒素の集積過程である. 窒素を供給するための個葉の光合成は, 受光態勢を介して葉の窒素濃度と関係が深く, 光の利用効率は植物体内の窒素の動態にも大きく関与しているものと考えられる. ダイズは密植栽培で高収量が得られるという報告が多い. かかる密植での群落内の光環境の改善は植物個体の強健な成長を促すとともに開花数, 莢数の増加につながり, 結果的に高収量をもたらすと思われる. ダイズは密植栽培ほど頂小葉の立ち上がりが小さいことが明らかにされており, 栽植様式を変化させて光を有効利用するような群落を構成することが重要である. よって本研究では, 光を有効利用する群落とそうでない群落を構成することで, 生殖生長期間における受光態勢の違いが窒素蓄積, 及び収量に与える影響を明らかにするとともに, 莢形成後の窒素の蓄積とその転流様式に及ぼす影響についても検討を行った. また, 栽植密度を一定にして畝間を変えること栽植様式を変化させ, 栽植様式の違いによる群落構造の変化, 光の利用効率の違いが乾物生産, 収量に与える影響についても調査を行った. 植物の全乾物重は栽植密度が高くなるにつれて増加し, また生殖生長期における子実肥大開始期に最も高まった. 生殖生長前期の乾物重は収量と相関が高く, 乾重量が高まると収量においても高まる傾向にあった. また, 受光態勢良い群落と, そうでない群落を比較すると, 密植, 疎植栽培のどちらにおいても, 生殖生長期間を通して受光態勢の良い群落の乾物重が高まった. 高い乾物生産を可能にするための受光量は葉面積によって決定されるが, 葉面積は群落内の葉の角度や葉の分布による配置, つまり受光態勢と深く関係している. 受光態勢の良い群落では生殖生長期初期, もしくは栄養生長期の段階から高い葉面積を示し, 子実肥大開始期で最も高い値を示した. それ以降は葉の枯れ上がりに伴い乾物重は減少するが, 受光態勢が悪い群落は減少割合が大きいのに対して良い群落は生殖生長期後期まで高い葉面積, 乾物重が維持されたため, 光合成能が高く維持されたと推察された.
群落構造を同化器官乾物重の垂直分布でとらえると, 乾物は上層 (地表面より70cm以上) に偏った分布が見られ, それ以下の層では段階的に減少した. この傾向は密植栽培で顕著であったが, 疎植栽培では上層部から中層部にかけて平均的な乾物の分布が見られた. 受光態勢の良い群落は上層 (120cm付近) に多くの乾物が分布しているが, 中層 (80cm付近) までに光の浸透がみられ, 光の利用効率がよいのに対して, 受光態勢の悪い群落は上層で多くの光が受光されてしまい, その結果として群落内部への浸透も見られなかった. 吸光係数を用いて群落構造を解析すると, この傾向が顕著であり, 受光態勢の良い群落では同化器官乾物重, LAIが高いにも関わらず吸光係数は低い値を示し, 群落内部へ光が浸透してきていることを示している. これに対して悪い群落は吸光係数は高い値を示しており, 群落内部への光の浸透が少なく, 利用効率が悪いことが示唆された. 開花数は, 開花開始期からの高い値での推移が見られ, 開花日数が経つにつれて段階的に減少した. しかし, 受光態勢の良い群落では初期から多くの開花が認められたのに対して, 悪い群落は初期の開花が少なく, 中期, 後期へと分散する傾向にあった. 光が群落内部へ浸透した群落は結莢率が高く, 特に分枝の結莢率が高まった.
窒素は光合成能と密接に関係し, 乾物生産や収量に影響を及ぼす. 生殖生長期間の葉の窒素濃度は開花盛期に最大値を示し, その後, 受光態勢の良し悪しに関わらず一様に低下するが, 受光態勢がよい群落は生殖生長初期から高く, 開花盛期以降に急激な低下が見られた. 窒素蓄積量は開花盛期後, 葉, 茎の蓄積量が高く, 莢形成後は莢の蓄積量が大きく増加した. また, 受光態勢のよい群落では子実肥大盛期においても葉の窒素濃度が高く維持されて, 光合成活性が高く維持され, このことが莢形成後の同化量増加へと寄与していたと思われた. さらに, 栄養器官からの再分配窒素量も多く, 栄養器官の中でも葉と共に茎からの再分配が窒素蓄積量増加へと貢献していた. 一方, 受光態勢が悪い群落においては葉の窒素濃度は段階的な減少を示し, 葉, 茎の窒素蓄積量は高まるものの, 莢の蓄積量の増加は小さかった. 莢の窒素蓄積量は再分配窒素に依存するようであり, その分配様式は葉からのみであった. また, 莢形成後窒素同化量も少なく, 莢窒素蓄積量はわずかな増加であった.\n収量は密植栽培ほど高く, 受光態勢が良くて光の利用効率が高い群落で増加した. この傾向は種子数, 莢数, 節数においても同様で, 収量は種子数と正の相関があり, 種子数は莢数と正の相関が認められた. 良い受光態勢により増加した莢数は種子数を増加させ, 収量増へ貢献した. 受光態勢の良い群落は生殖生長初期の光合成能が高く, 乾物生産が高まった. 乾物の増加は窒素の中間貯蔵量の増加につながり, 窒素転流量へと貢献したことが示唆された. また, 群落内部への光の透過は生殖生長後期において葉の窒素濃度低下を抑制した. 光合成能が高く維持されたことと, 再転流により莢への窒素蓄積量が増加したことは, 結果的にシンク能の増加につながった. シンク能としての莢数の増加には開花数や結莢率を介して受光量が関係していると考えられた. よって, 相互遮蔽が小さく受光態勢の良い群落は, 莢数が増加したことで種子数が増加し, 高収量へとつながったことが示唆された.
Useful light interception is very important for dry matter production and yield in soybean [Glycine max (L.) Merr.]. Plant population, planting pattern and plant type usually determine leaf arrangement in canopy. Leaf arrangement and leaf angle relate with light interception. Soybean with horizontal leaves often shows canopy structure which happen easily to be mutual shading. Therefore, it is important to improve light condition in canopy. Leaf arrangement relate with leaf area index (LAI). Higher LAI increases light interception. High efficiency light interception maintains a supportive role in relation to LAI. Photosynthetic rate is increased by greater light interception in an individual leaf. So, greater light interception increases canopy photosynthesis. Pod number was restricted by reproductive growth from R1 to R5. Pod number as sink increased with higher source activity. Light interception during reproductive stages influenced on dry matter production and yield. In this research, Canopy consisted of some plant densities and planting patterns to activate and not activate light efficiency (CE and CN). The objective in this study was to investigate the light utilization in the canopy for yield and yield components in case of arranging leaf and branch in CE and CN. Moreover, it was progressed to consider about the effect of light utilization on nitrogen accumulation, on translocation into the pod and on relation between sink and source. Total dry weight (TDW) was greater in higher plant density and was the greatest value at R5 stage. TDW from R1 to R5 correlated with yield, because this period including flower opening and pod formation. Compared with TDW between CE and CN, TDW was higher in CE than CN under both high and low plant densities. After R5, LAI decreased due to defoliation. At R6, CE maintained a high LAI by greater light interception and, moreover, greater canopy photosynthesis.
Assimilate dry matter distributed into high layers of canopy (more than 70cm) and it declined gradually to the ground in high plant density. Although greater dry weight of assimilate organs distributed at high layers (above 120cm), more light penetration into middle layers (above 80cm) was shown at CE. The leaflets of middle and lower layers utilized the penetrated light. CE might be advantageous for radiation transmission and distribution. A lower light extinction coefficient indicated light penetration into the middle and lower canopy layers. Greater flower number m^ was shown at early R2, and then declined gradually. Total flower number was higher in CE than in CN. Flower numbers at high and middle layers were greater in CE than in CN. These tendencies were found in branch flower number. The increases flower number related with high pod set in CE. After R2, leaf nitrogen concentration decreased sharply in CE, but gradually in CN. Total nitrogen accumulation was higher in CE than in CN from early reproductive stages. Leaf nitrogen accumulation distributed into higher layers of canopy and declined gradually to the ground in all treatments. But the nitrogen concentration level in leaf was higher in CE than in CN at low layers. Higher nitrogen concentration kept high photosynthetic ability because of more light penetration. Leaf and stem nitrogen accumulation increased in CE, however only leaf did in CN at R5. Nitrogen accumulation in vegetative organs contributed to the amount of nitrogen partitioning into the pod after R5. Light condition affected on nitrogen concentration and nitrogen accumulation in vegetative organs that contributed to the increase of nitrogen partitioning into the pod. Seed yield was greater in higher densities than in lower ones, and in CE than in CN in each density. The same were also found in seed number, pod number, and node number. Increased yield responded to increase seed number. Seed number contributed to yield, and yield was highly correlated with pod number. Also seed number correlated highly with pod number. Seed number was directly controlled by pod number. In response to light interception during reproductive stages, pod number was regulated by pods per node. Pods per reproductive node were restricted by pod initiation and pod set at R5. In conclusion, higher TDW at CE caused to increase photosynthesis activity during reproductive stages. Greater light interception related with higher TDW, and it was caused by higher LAI. Light penetration into the middle and lower layers of canopy maintained high nitrogen concentration. Flower numbers at middle and lower layers were greater in CE than in CN. The increase of flower number related with high pod set. Greater pod number was able to increase the amount of nitrogen into the pod. Therefore, increased pod number contributed to increase seed number and yield. The increase of yield was suggested to be due to greater light interception in canopy.
学位の種類: 博士(農学). 報告番号: 甲第1669号. 学位記番号: 新大院博(農)甲第23号. 学位授与年月日: 平成12年3月24日
新大院博(農)甲第23号
Databáze: OpenAIRE