炭化水素系ロケット燃料の熱分解吸熱特性に関する研究
Jazyk: | japonština |
---|---|
Popis: | 近年,観測・測位衛星,国際宇宙ステーションなど宇宙利用が促進されている。衛星などを宇宙空間へ輸送する手段として,使い捨て型ロケットと再使用型宇宙往還機の2種類に大別することができる。これらの宇宙輸送システムには大気中の飛翔および宇宙環境特有 の様々な問題があり,その中の一つとして熱の問題が挙げられる。具体的には飛行速度の増加に伴い,機体表面付近の空気が断熱圧縮されることによる機体表面の加熱および推力向上に伴う燃焼圧の増大によるエンジン燃焼器内部の高い熱負荷などの性能向上に起因する問題である。これらの熱負荷に対する冷却手段の一つに燃料を冷媒として利用する再生冷却システムがあり,現在使用されているロケットエンジンにも燃焼室壁面に対して再生冷却システムが適用されている。炭化水素系燃料は吸熱を伴った熱分解反応を示すことが分かっており,この化学的な吸熱を再生冷却に利用することで,冷却能力が約3倍になる。これにより,液体水素に対して冷却能力に劣る炭化水素系燃料を用いたロケットの適用可能な飛行マッハ数の増大と燃料密度が大きいことによる機体の小型化が可能である。本研究では,炭化水素系燃料の熱分解吸熱を利用した再生冷却システムの構築を目指し,供試燃料に対して熱分解吸熱特性を実験的および解析的に検証した。供試燃料には,ケロシン系燃料の主要成分である環状飽和炭化水素の代表的主成分であるメチルシクロヘキサン(MCH)と,クリーン推進剤として期待されるバイオエタノール(BE)を用いた。また,分解温度の低下と反応の促進のために触媒を用いた実験を行った。さらに,熱分解吸熱を用いた再生冷却システムを実機に適用するための具体的な検討を進めた。実験結果より,触媒を用いることで分解開始温度を約350 K 低減可能であり,制御可能であることがわかった。また,実験および解析結果より,ケロシン系燃料の再生冷却を用いたロケットエンジンシステムの簡易計算モデルにおいて,冷却能力の向上によって燃焼器壁面の温度を約140 K 低 減できるという結果を得た。一方,冷却流量を約20%まで低減し,これにより圧力損失が低下することで燃料ポンプのヘッドを約77% まで低減でき,エンジンシステムの性能向上に大きく寄与することを明らかにした。 Recently, the use of space for earth observation, global positioning satellite and International Space Station (ISS), etc. have been promoted. Means of transport to space satellites are classified into two types, which are expendable launch vehicle and reusable space plane. There are various problems for the flight into the atmosphere and for space environment characteristics in these space transportation systems, in which the thermal problem is one of serious issues. In particular, these problems are due to the improved capability, that is, the vehicle surface is heated by an adiabatic air compression near the surface under flight speed increase and the thermal load of the internal rocket combustor at higher combustion pressure will cause high thermal load for thrust chamber. There is the regenerative cooling system using fuel for refrigeration as one of the means for cooling heat load, the regenerative cooling system has been applied to the combustion chamber wall of the current rocket engine. The hydrocarbon fuel has been found to exhibit the endothermic thermal decomposition reaction. Cooling capacity of the regenerative cooling is about three times by using the endothermic reaction. From this result, it is possible to increase the flight Mach number of vehicle using the hydrocarbon fuel and it can reduce the size of vehicle by larger fuel density, even though whose cooling capacity is inferior to the liquid hydrogen. In the present study, endothermic thermal decomposition characteristics were verified experimentally and analytically for the test fuel in order to achieve the regenerative cooling system using the endothermic thermal decomposition of the hydrocarbon fuel. Methylcyclohexane (MCH) which is a typical main component of naphthenic hydrocarbons in the kerosene-based fuels and Bio-ethanol (BE) which is expected as new clean propellant fuel were used as test fuels. The experiment was performed using the catalysts in order to accelerate the reaction and to lower the decomposition temperature. In addition, reasonable investigation was proceeded to apply the regenerative cooling system for practical rocket engine by using endothermic thermal decomposition system. From the experimental results, it was found that the drop in the initiation temperature in the decomposition of fuel was 350 K with the catalyst. From these results in experiments and analysis, it was expected that the temperature of combustion chamber wall in the rocket engine system can be lowered 140 K by improving the cooling capacity using the regenerative cooling of kerosene-based fuels in a simple calculation model. On the other hand, this technology will considerably contribute to improve the performance of the engine system by reducing the cooling flow to about 20 % and, as the result, the head of fuel pump can be reduced to about 77 %. |
Databáze: | OpenAIRE |
Externí odkaz: |