On iterative solutions of the discrete Neumann problem for Poisson's equation

Autor: Fujita, Naoyuki, Takahashi, Tadayasu, Tamura, Atsuhiro
Jazyk: japonština
Rok vydání: 1994
Předmět:
Zdroj: 航空宇宙技術研究所特別資料: 第11回航空機計算空気力学シンポジウム論文集 = Special Publication of National Aerospace Laboratory: Proceedings of the 11th NAL Symposium on aircraft computational aerodynamics. 22:197-202
ISSN: 0289-260X
Popis: 航空宇宙技術研究所 10-11 Jun. 1993 東京 日本
National Aerospace Laboratory 10-11 Jun. 1993 Tokyo Japan
本論文は、ポアソン方程式に対する離散型ノイマン問題の反復解と反復不変量を扱う。反復解法の収束を理論的に保証するために、差分方程式に対していわゆる離散化された発散定理が必要となる。反復不変量が存在する事実を用いて、反復解が与えられた初期値によって定まる一意解に収束することが示される。反復不変量に関する数値実験を行い、未知数の選び方および基準点の解の値をくぎ付けにする操作が収束性に影響を及ぼすことを示した。
This paper is concerned with iterative solutions and iteration invariants of the discrete Neumann problem for Poisson's equation. In order to ensure convergence of iterative solutions theoretically, the so-called discrete divergence theorem is required for difference equations. Using the fact that iteration invariants exist, it is shown that the sequence of iterates converge to the unique solution which is determined by a given initial value. Numerical results on iteration invariants suggest that the choice of unknowns and the pinning down procedure may influence convergence.
資料番号: AA0004171034
レポート番号: NAL SP-22
Databáze: OpenAIRE