Autor: |
FUJITA, Haruhiro, YAMAMOTO, Ryo, KAWAHARA, Kazuyoshi, ITAGAKI, Masatoshi, ICHIKAWA, Kenta, Nagumo, Ayaka |
Jazyk: |
japonština |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
新潟国際情報大学経営情報学部紀要. 6:27-39 |
ISSN: |
2434-2939 |
Popis: |
車載カメラ画像のファインチューンドMask R-CNN モデルによる道路表面物セマンティックセグメンテーション、および土器3D-RGBA データの疑似ラベル教師あり分類・クラスタリングモデルによる導出クラスターと専門家分類のマッチング検証を行った。前者は4 つのCOCO データセット事前学習Mask R-CNN モデルを12 クラスの道路損傷等ラベル付15,881 セグメンテーションデータでファインチューニングを施し、推論および検証を行った。Mask R-CNN Inception ResNet101 AtrousCOCO が学習と推論で優れた結果を示した。東京国立博物館所蔵6 世紀須恵器の光学スキャナー計測データを3D-RGBA Voxel ベースに変換し、Multi View ベースを併用して疑似ラベル教師あり分類・クラスタリングモデルによりクラスターを導出した。須恵器身の色情報なし3D データから導出されたクラスターID3 には専門家分類型式のⅡ-4、特にⅡ-5 が多く集中し、クラスターID5 には専門家分類型式のⅡ-1 とⅡ-2 が集中する傾向が明らかとなった。その他のクラスターでは専門家分類型式が離散し、クラスターと専門家分類の大きな乖離がみられた。 |
Databáze: |
OpenAIRE |
Externí odkaz: |
|