Popis: |
Normally, the buck-boost converter adopts single or double closed-loop control, and there are differences in control and parameters for different working modes and loads. In this study, a unified control method, the passivity-based control (PBC), is applied to a buck-boost converter for different loads, including constant resistance load (CRL), constant power load (CPL), and battery load. The PBC is a nonlinear control based on energy dissipation principle, and it has strong robustness to parameter interference and external disturbance, and it also has the advantages of simple design and simple implementation. Although many research studies have been conducted before, the voltage and current-related power losses are considered, and different load models are also compared in this research. The detailed mathematical model, control principle, and controller design of the buck-boost converter are thoroughly analysed. In addition, SIMULINK-based simulation results and experimental verification results of different loads are also given in the paper. Also, the PBC has smaller current overshot and smaller current ripples compared with PI control in different loads condition. |