Popis: |
Timothy R Deer,1 Sam Eldabe,2 Steven M Falowski,3 Marc A Huntoon,4 Peter S Staats,5 Isaac R Cassar,6 Nathan D Crosby,6 Joseph W Boggs6 1The Spine and Nerve Center of the Virginias, Charleston, WV, USA; 2Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK; 3Department of Neurosurgery, Neurosurgical Associates of Lancaster, Lancaster, PA, USA; 4Anesthesiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA; 5Premier Pain Centers, Shrewsbury, NJ, USA; 6SPR Therapeutics, Cleveland, OH, USACorrespondence: Timothy R DeerThe Spine and Nerve Center of the Virginias, 400 Court Street, Suite 100, Charleston, WV, 25301, USATel +1 304/347-6141Fax +1 304/347-6855Email doctdeer@aol.comAbstract: Peripheral nerve stimulation (PNS) is an effective tool for the treatment of chronic pain, although its efficacy and utilization have previously been significantly limited by technology. In recent years, purpose-built percutaneous PNS devices have been developed to overcome the limitations of conventional permanently implanted neurostimulation devices. Recent clinical evidence suggests clinically significant and sustained reductions in pain can persist well beyond the PNS treatment period, outcomes that have not previously been observed with conventional permanently implanted neurostimulation devices. This narrative review summarizes mechanistic processes that contribute to chronic pain, and the potential mechanisms by which selective large diameter afferent fiber activation may reverse these changes to induce a prolonged reduction in pain. The interplay of these mechanisms, supported by data in chronic pain states that have been effectively treated with percutaneous PNS, will also be discussed in support of a new theory of pain management in neuromodulation: Peripherally Induced Reconditioning of the Central Nervous System (CNS).Keywords: chronic pain, neuromodulation, peripheral nerve stimulation, cortical plasticity, peripherally induced reconditioning, mechanism of action |