Ångstrom-Depth Resolution with Chemical Specificity at the Liquid-Vapor Interface

Autor: R. Dupuy, J. Filser, C. Richter, T. Buttersack, F. Trinter, S. Gholami, R. Seidel, C. Nicolas, J. Bozek, D. Egger, H. Oberhofer, S. Thürmer, U. Hergenhahn, K. Reuter, B. Winter, H. Bluhm
Přispěvatelé: Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), Max Planck Society, Goethe-Universität Frankfurt am Main, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Universität Bayreuth, Kyoto University, European Project: 883759,AQUACHIRAL
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, 2023, 130 (15), pp.156901. ⟨10.1103/PhysRevLett.130.156901⟩
ISSN: 0031-9007
1079-7114
DOI: 10.1103/PhysRevLett.130.156901⟩
Popis: The determination of depth profiles across interfaces is of primary importance in many scientific and technological areas. Photoemission spectroscopy is in principle well suited for this purpose, yet a quantitative implementation for investigations of liquid-vapor interfaces is hindered by the lack of understanding of electron-scattering processes in liquids. Previous studies have shown, however, that core-level photoelectron angular distributions (PADs) are altered by depth-dependent elastic electron scattering and can, thus, reveal information on the depth distribution of species across the interface. Here, we explore this concept further and show that the anisotropy parameter characterizing the PAD scales linearly with the average distance of atoms along the surface normal. This behavior can be accounted for in the low-collision-number regime. We also show that results for different atomic species can be compared on the same length scale. We demonstrate that atoms separated by about 1~\AA~along the surface normal can be clearly distinguished with this method, achieving excellent depth resolution.
Comment: Submitted to Phys. Rev. Lett
Databáze: OpenAIRE