Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications
Autor: | Peter Constantin, Vlad Vicol, Joonhyun La |
---|---|
Rok vydání: | 2019 |
Předmět: |
010102 general mathematics
Mathematical analysis Euler flow 01 natural sciences Euler equations 010101 applied mathematics symbols.namesake Mathematics - Analysis of PDEs Physics::Plasma Physics Physics::Space Physics symbols FOS: Mathematics Incompressible euler equations Geometry and Topology 0101 mathematics GEOM 35Q30 35Q35 35Q92 Analysis Mathematics Analysis of PDEs (math.AP) |
DOI: | 10.48550/arxiv.1903.11699 |
Popis: | We describe a method to construct smooth and compactly supported solutions of 3D incompressible Euler equations and related models. The method is based on localizable Grad–Shafranov equations and is inspired by the recent result (Gavrilov in A steady Euler flow with compact support. Geom Funct Anal 29(1):90–197, [Gav19]). |
Databáze: | OpenAIRE |
Externí odkaz: |