Some new properties of a suitable weak solution to the Navier-Stokes equations
Autor: | Francesca Crispo, Carlo Romano Grisanti, Paolo Maremonti |
---|---|
Přispěvatelé: | T. Bodnar G. P. Galdi, S. Necasova, Crispo, Francesca, Maremonti, Paolo, Romano Grisanti, Carlo |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics::Fluid Dynamics
regularity and partial regularity Weak solution weak solutions MathematicsofComputing_NUMERICALANALYSIS Mathematics::Analysis of PDEs Applied mathematics Navier-Stokes equations weak solutions regularity and partial regularity Navier-Stokes equations Navier–Stokes equations Mathematics |
Zdroj: | Advances in Mathematical Fluid Mechanics ISBN: 9783030681432 |
Popis: | The paper is concerned with the IBVP of the Navier–Stokes equations. The goal is the construction of a weak solution enjoying some new properties. Of course, we look for properties that are global in time. The results hold assuming an initial data v0 ∈ J2(Ω). |
Databáze: | OpenAIRE |
Externí odkaz: |