Polymeric materials for immune engineering: Molecular interaction to biomaterial design

Autor: Shreya S. Soni, Christopher B. Rodell
Rok vydání: 2021
Předmět:
Zdroj: Acta Biomaterialia. 133:139-152
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2021.01.016
Popis: Biomaterials continue to evolve as complex engineered tools for interactively instructing biological systems, aiding in the understanding and treatment of various disease states through intimate biological interaction. The immune response to polymeric materials is a critical area of study, as it governs the body's response to biomaterial implants, drug delivery vehicles, and even therapeutic drug formulations. Importantly, the development of the immune response to polymeric biomaterials spans length scales - from single molecular interactions to the complex sensing of bulk biophysical properties, all of which coordinate a tissue- and systems-level response. In this review, we specifically discuss a bottom-up approach to designing biomaterials that use molecular-scale interactions to drive immune response to polymers and discuss how these interactions can be leveraged for biomaterial design. STATEMENT OF SIGNIFICANCE: The immune system is an integral controller of (patho)physiological processes, affecting nearly all aspects of human health and disease. Polymeric biomaterials, whether biologically derived or synthetically produced, can potentially alter the behavior of immune cells due to their molecular-scale interaction with individual cells, as well as their interpretation at the bulk scale. This article reviews common mechanisms by which immune cells interact with polymers at the molecular level and discusses how these interactions are being leveraged to produce the next generation of biocompatible and immunomodulatory materials.
Databáze: OpenAIRE