$N=2$ and $N=4$ Subalgebras of Super Vertex Operator Algebras
Autor: | Geoffrey Mason, Michael P. Tuite, Gaywalee Yamskulna |
---|---|
Rok vydání: | 2016 |
Předmět: |
Statistics and Probability
Vertex (graph theory) 010308 nuclear & particles physics 010102 general mathematics Subalgebra General Physics and Astronomy Statistical and Nonlinear Physics 01 natural sciences Combinatorics Operator algebra Vertex operator algebra Modeling and Simulation Mathematics - Quantum Algebra 0103 physical sciences FOS: Mathematics Quantum Algebra (math.QA) Vertex algebras Superconformal algebra 0101 mathematics Mathematical Physics Superconformal algebras Mathematics |
DOI: | 10.48550/arxiv.1610.02269 |
Popis: | We develop criteria to decide if an $N=2$ or $N=4$ super conformal algebra is a subalgebra of a super vertex operator algebra in general, and of a super lattice theory in particular. We give some specific examples. Comment: The assumptions of Theorem 2 have been amended. A number of typos have been corrected and several more references added |
Databáze: | OpenAIRE |
Externí odkaz: |