Sustainable polyethylene fabrics with engineered moisture transport for passive cooling
Autor: | S. Hadi Zandavi, Matteo Fasano, Svetlana V. Boriskina, Corey P. Fucetola, Richard M. Osgood, Yi Huang, Matteo Alberghini, Seongdon Hong, L. Marcelo Lozano, Pietro Asinari, Francesco Signorato, Gang Chen, Ihsan Uluturk, Michael Y. Tolstorukov, Volodymyr F. Korolovych |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Textile industry
Textile Materials science Fabrication cooling Passive cooling Geography Planning and Development water Management Monitoring Policy and Law evaporation chemistry.chemical_compound heat transfer mass transfer Composite material Nature and Landscape Conservation chemistry.chemical_classification Global and Planetary Change Ecology Moisture textile Renewable Energy Sustainability and the Environment Nanoporous business.industry water energy cooling textile heat transfer mass transfer evaporation sustainability Polymer Polyethylene sustainability Urban Studies chemistry business Food Science energy |
Popis: | Polyethylene (PE) has emerged recently as a promising polymer for incorporation in wearable textiles owing to its high infrared transparency and tuneable visible opacity, which allows the human body to cool via thermal radiation, potentially saving energy on building refrigeration. Here, we show that single-material PE fabrics may offer a sustainable, high-performance alternative to conventional textiles, extending beyond radiative cooling. PE fabrics exhibit ultra-light weight, low material cost and recyclability. Industrial materials sustainability (Higg) index calculations predict a low environmental footprint for PE fabrics in the production phase. We engineered PE fibres, yarns and fabrics to achieve efficient water wicking and fast-drying performance which, combined with their excellent stain resistance, offer promise in reducing energy and water consumption as well as the environmental footprint of PE textiles in their use phase. Unlike previously explored nanoporous PE materials, the high-performance PE fabrics in this study are made from fibres melt spun and woven on standard equipment used by the textile industry worldwide and do not require any chemical coatings. We further demonstrate that these PE fibres can be dry coloured during fabrication, resulting in dramatic water savings without masking the PE molecular fingerprints scanned during the automated recycling process. The textile industry is one of the largest polluters. Here the authors show that polyethylene is a sustainable alternative textile with water wicking and fast-drying performance. The fabrication of polyethylene fabrics is compatible with standard equipment and could be dry-coloured, further reducing water consumption. |
Databáze: | OpenAIRE |
Externí odkaz: |