Open source arc analyzer: Multi-sensor monitoring of wire arc additive manufacturing
Autor: | Shane Oberloier, Adam Pringle, Joshua M. Pearce, Paul G. Sanders, Aliaksei L. Petsiuk |
---|---|
Přispěvatelé: | Michigan Technological University, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Spectrum analyzer
Materials science Open-source hardware Acoustics WAAM Biomedical Engineering metal printing Welding Industrial and Manufacturing Engineering Gas metal arc welding law.invention Arc (geometry) Electric arc Welder law low cost metal 3-D printer GMAW metal inert gas welding lcsh:Science (General) Metal 3-D printing Instrumentation Civil and Structural Engineering 3-D printing GMAW 3-D printing Mechanical Engineering RepRap Wire Arc Additive Manufacturing Metal 3-D printing low cost metal 3-D printer open-source metal 3-D printer GMAW 3-D printing open-source metal 3-D printer gas metal arc weld MIG welding Light intensity 3-D printing gas metal arc weld GMAW metal inert gas welding MIG welding additive manufacturing metal printing Radio frequency additive manufacturing lcsh:Q1-390 Voltage |
Zdroj: | HardwareX, Vol 8, Iss, Pp e00137-(2020) Electrical and Computer Engineering Publications |
Popis: | Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying the processing during WAAM, which includes voltage, current, sound, light intensity, radio frequency, and temperature data outputs. The open source arc analyzer is tested here on aluminum WAAM by varying wire feed rate and measuring the resultant changes in the sensor data. Visual inspection and microstructural analysis of the printed samples looking for the presence of porosity are used as the physical indicators of quality. The value of the sensors was assessed and the most impactful sensors were found to be the light and radio frequency sensors, which showed arc extinction events and a characteristic “good weld” peak frequency. |
Databáze: | OpenAIRE |
Externí odkaz: |