Multiple hidden Markov models for categorical time series

Autor: Roberto Colombi, Sabrina Giordano
Rok vydání: 2015
Předmět:
Zdroj: Journal of Multivariate Analysis. 140:19-30
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2015.04.002
Popis: We introduce multiple hidden Markov models (MHMMs) where an observed multivariate categorical time series depends on an unobservable multivariate Mar- kov chain. MHMMs provide an elegant framework for specifying various independence relationships between multiple discrete time processes. These independencies are interpreted as Markov properties of a mixed graph and a chain graph associated to the latent and observable components of the MHMM, respectively. These Markov properties are also translated into zero restrictions on the parameters of marginal models for the transition probabilities and the distributions of the observable variables given the latent states.
Databáze: OpenAIRE