Bi-Modal Person Recognition on a Mobile Phone: Using Mobile Phone Data
Autor: | Josef Kittler, Matti Pietikäinen, Abdenour Hadid, Timothy F. Cootes, Pavel Matejka, Anthony Larcher, Chris McCool, Sébastien Marcel, Jean-François Bonastre, Phil Tresadern, Norman Poh, Jan Cernock #x Fd, Christophe Lévy, Driss Matrouf |
---|---|
Přispěvatelé: | IDIAP Research Institute, University of Oulu, Machine Vision Group (MVG), Phonexia s. r. o. (Phonexia s. r. o.), Brno University of Technology [Brno] (BUT), Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey (UNIS), Laboratoire Informatique d'Avignon (LIA), Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI, University of Manchester [Manchester], Centre d'Enseignement et de Recherche en Informatique - CERI-Avignon Université (AU) |
Rok vydání: | 2012 |
Předmět: |
Authentication
Biometrics speaker recognition Computer science mobile biometrics Speech recognition [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 020206 networking & telecommunications 02 engineering and technology Speaker recognition Face Recognition Facial recognition system [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Mobile phone Face (geometry) bi-modal authentication 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Mobile device Protocol (object-oriented programming) |
Zdroj: | ICME Workshops 2012 IEEE International Conference on Multimedia and Expo Workshops IEEE International Conference on Multimedia and Expo (ICME) IEEE International Conference on Multimedia and Expo (ICME), Jul 2012, Melbourne, Australia. ⟨10.1109/ICMEW.2012.116⟩ |
Popis: | International audience; This paper presents a novel fully automatic bi-modal, face and speaker, recognition system which runs in real-time on a mobile phone. The implemented system runs in real-time on a Nokia N900 and demonstrates the feasibility of performing both automatic face and speaker recognition on a mobile phone. We evaluate this recognition system on a novel publicly-available mobile phone database and provide a well defined evaluation protocol. This database was captured almost exclusively using mobile phones and aims to improve research into deploying biometric techniques to mobile devices. We show, on this mobile phone database, that face and speaker recognition can be performed in a mobile environment and using score fusion can improve the performance by more than 25% in terms of error rates. |
Databáze: | OpenAIRE |
Externí odkaz: |