Perturbations of completely positive maps and strong NF algebras
Autor: | Caleb Eckhardt |
---|---|
Rok vydání: | 2010 |
Předmět: |
Pure mathematics
Mathematics::Operator Algebras General Mathematics Mathematics::Rings and Algebras Mathematics - Operator Algebras Perturbation (astronomy) Compact operator Injective function Functional Analysis (math.FA) Mathematics - Functional Analysis Order embedding FOS: Mathematics Operator Algebras (math.OA) 46L05 46L07 Mathematics |
Zdroj: | Proceedings of the London Mathematical Society. 101:795-820 |
ISSN: | 0024-6115 |
DOI: | 10.1112/plms/pdq008 |
Popis: | Let $\phi:M_n\to B(H)$ be an injective, completely positive contraction with $\V\phi^{-1}:\phi(M_n)\to M_n\V_{cb}\leq1+\delta(\epsilon).$ We show that if either (i) $\phi(M_n)$ is faithful modulo the compact operators or (ii) $\phi(M_n)$ approximately contains a rank 1 projection, then there is a complete order embedding $\psi:M_n\to B(H)$ with $\V\phi-\psi\V_{cb} Comment: 26 pages |
Databáze: | OpenAIRE |
Externí odkaz: |