Wrist Resistance Training Improves Motor Control and Strength

Autor: Genevieve Hill, Jae Kun Shim, You-Sin Kim, Yoon Hyuk Kim, Edward Chu, Chang Kook Kim
Rok vydání: 2018
Předmět:
Zdroj: Journal of Strength and Conditioning Research. 32:962-969
ISSN: 1064-8011
DOI: 10.1519/jsc.0000000000002019
Popis: Chu, E, Kim, Y-S, Hill, G, Kim, YH, Kim, CK, and Shim, JK. Wrist resistance training improves motor control and strength. J Strength Cond Res 32(4): 962-969, 2018-The aim of this study was to investigate the effects of a 6-week direction-specific resistance training program on isometric torque control and isokinetic torque strength of the wrist joint. Nineteen subjects were randomly assigned to either the wrist training group (n = 9) or the control group (n = 10). The training group performed wrist exercises in 6 directions (flexion, extension, pronation, supination, radial deviation, and ulnar deviation), whereas the control group did not. Data were collected on the isometric torque control, 1-repetition maximum (1RM) strength, and isokinetic maximum torque (angular velocity of 60° per second wrist movements) before and after 6 weeks of resistance training and at 2-week intervals during training. The training group showed significant decreases in isometric torque control error in all 6 directions after 2 weeks of resistance training, whereas the control group did not show significant increase or decrease. After 4 weeks of training, the training group showed significant increases in maximum strength in all 6 directions as assessed by 1RM strength and isokinetic strength tests, whereas the control group did not show any statistically significant changes. This study shows that motor control significantly improves within the first 2 weeks of resistance training, whereas the wrist strength significantly improves within the first 4 weeks of resistance training. Based on the findings of this study, coaches and trainers should consider wrist resistance training to improve athletes' muscular strength and control of the wrist muscles.
Databáze: OpenAIRE