Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al2O3/TiO2 resistive memories

Autor: Dominique Drouin, Fabien Alibart, Frédéric Brousseau, Yann Beilliard, Serge Ecoffey, François Paquette
Přispěvatelé: Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), Institut Quantique [Sherbrooke] (UdeS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Nanostructures, nanoComponents & Molecules - IEMN (NCM-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Canada First Research Excellence Fund, Natural Sciences and Engineering Research Council of Canada, GA773228, ERC-2017-COG project IONOS, European Project: 773228,H2020,ERC-2017-COG,IONOS(2018)
Rok vydání: 2020
Předmět:
Materials science
Al2O3/TiO2-x memristor
FOS: Physical sciences
Bioengineering
CMOS compatible
02 engineering and technology
Applied Physics (physics.app-ph)
010402 general chemistry
01 natural sciences
Protein filament
[SPI]Engineering Sciences [physics]
cryogenic electronics
General Materials Science
metal-insulator transition
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Electrical and Electronic Engineering
Metal–insulator transition
multilevel switching
Conductive filaments
Quantum tunnelling
Resistive touchscreen
business.industry
Mechanical Engineering
Conductance
Physics - Applied Physics
General Chemistry
021001 nanoscience & nanotechnology
Thermal conduction
Space charge
Resistive memories
0104 chemical sciences
Resistive random-access memory
Mechanics of Materials
Optoelectronics
0210 nano-technology
business
Zdroj: Nanotechnology
Nanotechnology, Institute of Physics, 2020, 31 (44), pp.445205. ⟨10.1088/1361-6528/aba6b4⟩
Nanotechnology, 2020, 31 (44), pp.445205. ⟨10.1088/1361-6528/aba6b4⟩
ISSN: 0957-4484
1361-6528
0022-3727
2053-1591
0268-1242
0022-3719
DOI: 10.48550/arxiv.2006.13394
Popis: This study demonstrates multilevel switching at 1.5 K of Al2O3/TiO2-x resistive memory devices fabricated with CMOS-compatible processes and materials. The I-V characteristics exhibit a negative differential resistance (NDR) effect due to a Joule-heating-induced metal-insulator transition of the Ti4O7 conductive filament. Carrier transport analysis of all multilevel switching I-V curves show that while the insulating regime follows the space charge limited current (SCLC) model for all resistance states, the conduction in the metallic regime is dominated by SCLC and trap-assisted tunneling (TAT) for low- and high-resistance states respectively. A non-monotonic conductance evolution is observed in the insulating regime, as opposed to the continuous and gradual conductance increase and decrease obtained in the metallic regime during the multilevel SET and RESET operations. Cryogenic transport analysis coupled to an analytical model accounting for the metal-insulator-transition-induced NDR effects and the resistance states of the device provide new insights on the conductive filament evolution dynamics and resistive switching mechanisms. Our findings suggest that the non-monotonic conductance evolution in the insulating regime is due to the combined effects of longitudinal and radial variations of the Ti4O7 conductive filament during the switching. This behavior results from the interplay between temperature- and field-dependent geometrical and physical characteristics of the filament.
Comment: 8 pages, 4 figures
Databáze: OpenAIRE