Hydrodynamic limit for a facilitated exclusion process
Autor: | Marielle Simon, Makiko Sasada, Oriane Blondel, Clément Erignoux |
---|---|
Přispěvatelé: | Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Systèmes de particules et systèmes dynamiques (Paradyse), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Graduate School of Mathematical Sciences[Tokyo], The University of Tokyo (UTokyo), We thank Patrícia Gonçalves, Claudio Landim, Cristina Toninelli and Augusto Teixeira for helpful discussions. O.B. and M.S. are grateful to the University of Tokyo for its hospitality. O.B. acknowledges support from ANR-15-CE40-0020-03 grant LSD and ANR-16-CE93-0003 grant MALIN. M.S.thank Labex CEMPI (ANR-11-LABX-0007-01) and acknowledges support from the project EDNHS ANR-14-CE25-0011 of the French National Research Agency (ANR). O.B. and M.S. thank INSMI (CNRS) for its support through the PEPS project 'Dérivation et Étude Mathématique de l’Équation des Milieux Poreux' (2016). M.S. was supported by JSPS Grant-in-Aid for Scientific Research (B) (Generative Research Fields) No.16KT0021. The research leading to the present results benefited from the financial support of the seventh Framework Program of the European Union (7ePC/2007-2013), grant agreement no266638. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (grant agreement no715734). Part of this work was done during the authors’ stay at the Institut Henri Poincaré – Centre Emile Borel during the trimester 'Stochastic Dynamics Out of Equilibrium'. The authors thank this institution for its hospitality and support., ANR-15-CE40-0020,LSD,Modèles stochastiques en grande dimension pour la physique statistique hors équilibre(2015), ANR-16-CE93-0003,MALIN,Marches aléatoires en interaction(2016), ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), ANR-14-CE25-0011,EDNHS,Diffusion de l'énergie dans des systèmes hamiltoniens bruitésés(2014), Institut Camille Jordan [Villeurbanne] (ICJ), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Paradyse, Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Statistics and Probability
Phase transition Diffusion equation Conserved lattice gases MSC: 60K35 35R35 60J27 Time scaling 01 natural sciences 010104 statistics & probability Facilitated exclusion process [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] Lattice (order) FOS: Mathematics Ergodic theory Statistical physics 0101 mathematics Mathematics 010102 general mathematics Degenerate energy levels Probability (math.PR) Fast diffusion equation [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] 60K35 Jump Hydrodynamic limit Statistics Probability and Uncertainty Active-absorbing phase transition Mathematics - Probability |
Zdroj: | Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (1), pp.667-714. ⟨10.1214/19-AIHP977⟩ Ann. Inst. H. Poincaré Probab. Statist. 56, no. 1 (2020), 667-714 Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (1), pp.667-714. ⟨10.1214/19-AIHP977⟩ |
ISSN: | 0246-0203 1778-7017 |
DOI: | 10.1214/19-AIHP977⟩ |
Popis: | We study the hydrodynamic limit for a periodic $1$-dimensional exclusion process with a dynamical constraint, which prevents a particle at site $x$ from jumping to site $x\pm1$ unless site $x\mp1$ is occupied. This process with degenerate jump rates admits transient states, which it eventually leaves to reach an ergodic component, assuming that the initial macroscopic density is larger than $\frac{1}{2}$, or one of its absorbing states if this is not the case. It belongs to the class of conserved lattice gases (CLG) which have been introduced in the physics literature as systems with active-absorbing phase transition in the presence of a conserved field. We show that, for initial profiles smooth enough and uniformly larger than the critical density $\frac{1}{2}$, the macroscopic density profile for our dynamics evolves under the diffusive time scaling according to a fast diffusion equation (FDE). The first step in the proof is to show that the system typically reaches an ergodic component in subdiffusive time. 55 p |
Databáze: | OpenAIRE |
Externí odkaz: |