Last-passage time for linear diffusions and application to the emptying time of a box
Autor: | Alain Comtet, Grégory Schehr, Françoise Cornu |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2020 |
Předmět: |
[PHYS]Physics [physics]
Laplace transform Statistical Mechanics (cond-mat.stat-mech) Stochastic process Explicit formulae Mathematical analysis Probability (math.PR) FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) 01 natural sciences 010305 fluids & plasmas Scaling limit Gumbel distribution 0103 physical sciences FOS: Mathematics 010306 general physics Extreme value theory Constant (mathematics) Brownian motion Condensed Matter - Statistical Mechanics Mathematical Physics Mathematics - Probability Mathematics |
Zdroj: | Journal of Statistical Physics Journal of Statistical Physics, Springer Verlag, 2020, ⟨10.1007/s10955-020-02637-6⟩ |
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.48550/arxiv.2006.06758 |
Popis: | We study the statistics of last-passage time for linear diffusions. First we present an elementary derivation of the Laplace transform of the probability density of the last-passage time, thus recovering known results from the mathematical literature. We then illustrate them on several explicit examples. In a second step we study the spectral properties of the Schr\"{o}dinger operator associated to such diffusions in an even potential $U(x) = U(-x)$, unveiling the role played by the so-called Weyl coefficient. Indeed, in this case, our approach allows us to relate the last-passage times for dual diffusions (i.e., diffusions driven by opposite force fields) and to obtain new explicit formulae for the mean last-passage time. We further show that, for such even potentials, the small time $t$ expansion of the mean last-passage time on the interval $[0,t]$ involves the Korteveg-de Vries invariants, which are well known in the theory of Schr\"odinger operators. Finally, we apply these results to study the emptying time of a one-dimensional box, of size $L$, containing $N$ independent Brownian particles subjected to a constant drift. In the scaling limit where both $N \to \infty$ and $L \to \infty$, keeping the density $\rho = N/L$ fixed, we show that the limiting density of the emptying time is given by a Gumbel distribution. Our analysis provides a new example of the applications of extreme value statistics to out-of-equilibrium systems. Comment: 34 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |