Beneficial effects of postnatal choline supplementation on long-Term neurocognitive deficit resulting from fetal-Neonatal iron deficiency
Autor: | Bruce C. Kennedy, Maulika Kohli, Jonathan C. Gewirtz, Phu V. Tran, Michael K. Georgieff, Jamie J. Maertens |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Male medicine.medical_specialty Iron Neurocognitive Disorders Hippocampus Biology Article Choline Rats Sprague-Dawley 03 medical and health sciences Behavioral Neuroscience chemistry.chemical_compound 0302 clinical medicine Pregnancy Internal medicine Neuroplasticity medicine Animals Fetus 030109 nutrition & dietetics Neuronal Plasticity Anemia Iron-Deficiency Iron deficiency medicine.disease Rats Endocrinology chemistry Animals Newborn Prenatal Exposure Delayed Effects Synaptic plasticity Dietary Supplements Gestation Female 030217 neurology & neurosurgery |
Zdroj: | Behav Brain Res |
ISSN: | 1872-7549 |
Popis: | Early-life iron deficiency is a common nutrient condition worldwide and can result in cognitive impairment in adulthood despite iron treatment. In rodents, prenatal choline supplementation can diminish long-term hippocampal gene dysregulation and neurocognitive deficits caused by iron deficiency. Since fetal iron status is generally unknown in humans, we determined whether postnatal choline supplementation exerts similar beneficial effects. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (3-6 ppm Fe) from gestational day (G) 3 through postnatal day (P) 7, and an iron-sufficient (IS) diet (200 ppm Fe) thereafter. Control pups were provided IS diet throughout. Choline (5 ppm) was given to half the nursing dams and weanlings in each group from P11-P30. P65 rat cognitive performance was assessed by novel object recognition (NOR). Real-time PCR was performed to validate expression levels of synaptic plasticity genes known to be dysregulated by early-life iron deficiency. Postnatal choline supplementation prevented impairment of NOR memory in formerly iron-deficient (FID) adult rats but impaired NOR memory in IS controls. Gene expression analysis revealed a recovery of 4 out of 10 dysregulated genes compared to 8 of the same 10 genes that we previously demonstrated to recover following prenatal choline supplementation. Recognition memory deficits induced by early-life iron deficiency can be prevented by postnatal choline supplementation and disrupted expression of a subset of synaptic plasticity genes can be ameliorated. The positive response to postnatal choline represents a potential adjunctive therapeutic supplement to treat iron-deficient anemic children in order to spare long-term neurodevelopmental deficits. |
Databáze: | OpenAIRE |
Externí odkaz: |