On structure groups of set-theoretic solutions to the Yang–Baxter equation

Autor: Victoria Lebed, Leandro Vendramin
Přispěvatelé: Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Departamento de Matemática [Buenos Aires], Facultad de Ciencias Exactas y Naturales [Buenos Aires] (FCEyN), Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA), Mathematics
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Proceedings of the Edinburgh Mathematical Society
Proceedings of the Edinburgh Mathematical Society, Cambridge University Press (CUP), 2019, pp.1-35. ⟨10.1017/S0013091518000548⟩
ISSN: 0013-0915
1464-3839
Popis: This paper explores the structure groups $G_{(X,r)}$ of finite non-degenerate set-theoretic solutions $(X,r)$ to the Yang-Baxter equation. Namely, we construct a finite quotient $\overline{G}_{(X,r)}$ of $G_{(X,r)}$, generalizing the Coxeter-like groups introduced by Dehornoy for involutive solutions. This yields a finitary setting for testing injectivity: if $X$ injects into $G_{(X,r)}$, then it also injects into $\overline{G}_{(X,r)}$. We shrink every solution to an injective one with the same structure group, and compute the rank of the abelianization of $G_{(X,r)}$. We show that multipermutation solutions are the only involutive solutions with diffuse structure group; that only free abelian structure groups are biorderable; and that for the structure group of a self-distributive solution, the following conditions are equivalent: biorderable, left-orderable, abelian, free abelian, torsion free.
32 pages. Final version. Accepted for publication in Proc. Edinburgh Math. Soc
Databáze: OpenAIRE