A minimal model for adaptive SIS epidemics
Autor: | Massimo A. Achterberg, Mattia Sensi |
---|---|
Přispěvatelé: | Delft University of Technology (TU Delft), Mathématiques pour les Neurosciences (MATHNEURO), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria) |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
Risk perception
Applied Mathematics Mechanical Engineering Aerospace Engineering Adaptive networks Ocean Engineering Dynamical Systems (math.DS) SIS epidemics Network epidemiology Control and Systems Engineering FOS: Mathematics Electrical and Electronic Engineering Mathematics - Dynamical Systems [MATH]Mathematics [math] Planar system |
Zdroj: | Nonlinear Dynamics Nonlinear Dynamics, 2023, ⟨10.1007/s11071-023-08498-4⟩ Nonlinear Dynamics: an international journal of nonlinear dynamics and chaos in engineering systems |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-023-08498-4 |
Popis: | The interplay between disease spreading and personal risk perception is of key importance for modelling the spread of infectious diseases. We propose a planar system of ordinary differential equations (ODEs) to describe the co-evolution of a spreading phenomenon and the average link density in the personal contact network. Contrary to standard epidemic models,we assume that the contact network changes based on the current prevalence of the disease in the population, i.e.\ it adapts to the current state of the epidemic. We assume that personal risk perception is described using two functional responses: one for link-breaking and one for link-creation. The focus is on applying the model to epidemics, but we highlight other possible fields of application. We derive an explicit form for the basic reproduction number and guarantee the existence of at least one endemic equilibrium, for all possible functional responses. Moreover, we show that for all functional responses, limit cycles do not exist. Comment: 19 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |