Low-Complexity Tree-Based Iterative Decoding for Coded SCMA

Autor: Ana Scharf, Bartolomeu F. Uchoa-Filho, Bruno Fontana da Silva, Didier Le Ruyet
Přispěvatelé: Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC), Instituto Federal Sul-rio-grandense [Passo Fundo] (IFSUL), CEDRIC. Traitement du signal et architectures électroniques (CEDRIC - LAETITIA), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Communication and Information Systems
Journal of Communication and Information Systems, Brazilian Telecommunications Society (SBrT), 2020, 35 (1), pp.181-188. ⟨10.14209/jcis.2020.19⟩
ISSN: 1980-6604
DOI: 10.14209/jcis.2020.19⟩
Popis: International audience; Sparse Code Multiple Access (SCMA) is a powerful multiple access technique for future generations of wireless communication where users are allowed to transmit through pre-defined channel resources with a controlled degree of collision. The base-station then recovers all the users' data through some iterative method. The well-known Message-Passing Algorithm (MPA) has excellent performance but has exponential decoding complexity. Alternative decoding algorithms, such as MPA in the log-domain (Log-MPA), have been proposed in the literature aiming to reduce the decoding complexity while not significantly decreasing performance. In recent work, the authors proposed a modification in the conventional Log-MPA by exploring a tree structure associated with the decoding equations. By properly avoiding symbols with low reliability, a pruned tree is obtained, yielding an arbitrary trade-off between performance and complexity in the joint detection. In the present work, we extend this contribution by showing that the advantages of the tree-based decoding algorithm are magnified when SCMA is coupled to an error-correcting code, in particular, a Low-Density-Parity-Check (LDPC) code. Through computer simulations, we show that an improved performance-decoding complexity trade-off is obtained.
Databáze: OpenAIRE