Lehmer’s problem for arbitrary groups
Autor: | Wolfgang Lück |
---|---|
Rok vydání: | 2020 |
Předmět: |
Discrete mathematics
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 010102 general mathematics 0103 physical sciences ComputingMethodologies_DOCUMENTANDTEXTPROCESSING 010307 mathematical physics Geometry and Topology 0101 mathematics 01 natural sciences ComputingMilieux_MISCELLANEOUS Analysis Mathematics |
Zdroj: | Journal of Topology and Analysis |
ISSN: | 1793-7167 1793-5253 |
DOI: | 10.1142/s1793525321500035 |
Popis: | We consider the problem whether for a group [Formula: see text] there exists a constant [Formula: see text] such that for any [Formula: see text]-matrix [Formula: see text] over the integral group ring [Formula: see text] the Fuglede–Kadison determinant of the [Formula: see text]-equivariant bounded operator [Formula: see text] given by right multiplication with [Formula: see text] is either one or greater or equal to [Formula: see text]. If [Formula: see text] is the infinite cyclic group and we consider only [Formula: see text], this is precisely Lehmer’s problem. |
Databáze: | OpenAIRE |
Externí odkaz: |