On the (non)existence of symplectic resolutions of linear quotients
Autor: | Travis Schedler, Gwyn Bellamy |
---|---|
Přispěvatelé: | National Science Foundation |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Symplectic group General Mathematics 010102 general mathematics Mathematical analysis 16. Peace & justice Symplectic representation 01 natural sciences Symplectic matrix 0101 Pure Mathematics Symplectic vector space 0103 physical sciences 010307 mathematical physics 0101 mathematics Mathematics::Representation Theory Symplectomorphism Mathematics::Symplectic Geometry Moment map Symplectic geometry Symplectic manifold Mathematics |
Zdroj: | Mathematical Research Letters. 23:1537-1564 |
ISSN: | 1945-001X 1073-2780 |
DOI: | 10.4310/mrl.2016.v23.n6.a1 |
Popis: | We study the existence of symplectic resolutions of quotient singularities V/GV/G, where VV is a symplectic vector space and GG acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form K⋊S2K⋊S2 where K |
Databáze: | OpenAIRE |
Externí odkaz: |