Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing

Autor: Craig Milroy, Arumugam Manthiram, Toshihiko Fujimori, Seon-Pil Jang, Ananth Dodabalapur
Rok vydání: 2016
Předmět:
Zdroj: Small (Weinheim an der Bergstrasse, Germany). 13(11)
ISSN: 1613-6829
Popis: Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed “Internet of Things” network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium–sulfur (Li–S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li–S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce ≈800 mAh g−1 S initially and ≈700 mAh g−1 after 100 charge/discharge cycles at C/2 rate.
Databáze: OpenAIRE