Calderón-type inequalities for affine frames
Autor: | Eugenio Hernández, Davide Barbieri, Azita Mayeli |
---|---|
Přispěvatelé: | UAM. Departamento de Matemáticas |
Rok vydání: | 2019 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Inequality Matemáticas Applied Mathematics media_common.quotation_subject 010102 general mathematics 010103 numerical & computational mathematics Frames in LCA groups Type (model theory) Automorphism 01 natural sciences Upper and lower bounds Calderón condition for frames Metric space Metric (mathematics) Affine transformation 0101 mathematics Gabor systems Mathematics media_common |
Zdroj: | Biblos-e Archivo. Repositorio Institucional de la UAM instname Applied and Computational Harmonic Analysis |
Popis: | We prove sharp upper and lower bounds for generalized Calderón's sums associated to frames on LCA groups generated by affine actions of cocompact subgroup translations and general measurable families of automorphisms. The proof makes use of techniques of analysis on metric spaces, and relies on a counting estimate of lattice points inside metric balls. We will deduce as special cases Calderón-type inequalities for families of expanding automorphisms as well as for LCA-Gabor systems This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 777822. D. Barbieri and E. Hernández were supported by Grants MTM2016-76566-P (MINECO, Spain). A. Mayeli was supported by PSC-CUNY grant 60623-00 48 |
Databáze: | OpenAIRE |
Externí odkaz: |