Dirac’s Formalism for Time-Dependent Hamiltonian Systems in the Extended Phase Space
Autor: | Daniel Gutiérrez Ruiz, J. David Vergara, Angel Garcia-Chung |
---|---|
Rok vydání: | 2021 |
Předmět: |
path integrals
Physics Dirac (software) quantum cosmology Elementary particle physics time-dependent quantum mechanics General Physics and Astronomy Boundary (topology) Propagator Canonical transformation QC793-793.5 Space (mathematics) Hamiltonian system Path integral formulation Invariant (mathematics) Mathematical physics |
Zdroj: | Universe Volume 7 Issue 4 Universe, Vol 7, Iss 109, p 109 (2021) |
ISSN: | 2218-1997 |
Popis: | Dirac’s formalism for constrained systems is applied to the analysis of time-dependent Hamiltonians in the extended phase space. We show that the Lewis invariant is a reparametrization invariant, and we calculate the Feynman propagator using the extended phase space description. We show that the Feynman propagator’s quantum phase is given by the boundary term of the canonical transformation of the extended phase space. We propose a new canonical transformation within the extended phase space that leads to a Lewis invariant generalization, and we sketch some possible applications. |
Databáze: | OpenAIRE |
Externí odkaz: |