Block Low-Rank Matrices with Shared Bases: Potential and Limitations of the BLR^2 Format

Autor: Alfredo Buttari, Théo Mary, Cleve Ashcraft
Přispěvatelé: ANSYS, Algorithmes Parallèles et Optimisation (IRIT-APO), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Performance et Qualité des Algorithmes Numériques (PEQUAN), Laboratoire d'Informatique de Paris 6 (LIP6), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Centre National de la Recherche Scientifique (CNRS), LIP6
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications, Society for Industrial and Applied Mathematics, In press
ISSN: 0895-4798
1095-7162
Popis: International audience; We investigate a special class of data sparse rank-structured matrices that combine a flat block low-rank (BLR) partitioning with the use of shared (called nested in the hierarchical case) bases. This format is to H 2 matrices what BLR is to H matrices: we therefore call it the BLR 2 matrix format. We present algorithms for the construction and LU factorization of BLR 2 matrices, and perform their cost analysis-both asymptotically and for a fixed problem size. With weak admissibility, BLR 2 matrices reduce to block separable matrices (the flat version of HBS/HSS). Our analysis and numerical experiments reveal some limitations of BLR 2 matrices with weak admissibility, which we propose to overcome with two approaches: strong admissibility, and the use of multiple shared bases per row and column.
Databáze: OpenAIRE