Global dynamics in a stochastic three species food-chain model with harvesting and distributed delays
Autor: | Zhidong Teng, Nafeisha Tuerxun, Ahmadjan Muhammadhaji |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Lyapunov function
Inequality estimation Algebra and Number Theory Extinction Partial differential equation Distributed delay Applied Mathematics lcsh:Mathematics Global stability lcsh:QA1-939 Stochastic integral symbols.namesake Exponential stability Ordinary differential equation symbols Probability distribution Applied mathematics Harvesting Stochastic food-chain model Food chain model Analysis Mathematics |
Zdroj: | Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-30 (2019) |
ISSN: | 1687-1847 |
DOI: | 10.1186/s13662-019-2122-4 |
Popis: | This paper proposes a stochastic three species food-chain model with harvesting and distributed delays. Some criteria for the global dynamics of all positive solutions, including the existence of global positive solutions, stochastic boundedness, extinction, global asymptotic stability in the mean, and the probability distribution, are established by using the stochastic integral inequalities, Lyapunov function method, and the inequality estimation technique. Furthermore, the effects of harvesting are discussed, the optimal harvesting strategy and the maximum of expectation of sustainable yield (MESY for short) are obtained. Finally, numerical examples are carried out to illustrate our main results. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |