Predictive Distribution Modeling Using Transformation Forests

Autor: Hothorn, Torsten, Zeileis, Achim
Přispěvatelé: University of Zurich, Hothorn, Torsten
Rok vydání: 2021
Předmět:
Statistics and Probability
Computer science
610 Medicine & health
Machine learning
computer.software_genre
Conditional expectation
01 natural sciences
010104 statistics & probability
03 medical and health sciences
Simple (abstract algebra)
Discrete Mathematics and Combinatorics
1804 Statistics
Probability and Uncertainty

2613 Statistics and Probability
0101 mathematics
030304 developmental biology
0303 health sciences
business.industry
Statistics
Supervised learning
Regression analysis
10060 Epidemiology
Biostatistics and Prevention Institute (EBPI)

Conditional probability distribution
Random forest
Distribution (mathematics)
Transformation (function)
2607 Discrete Mathematics and Combinatorics
Probability and Uncertainty
Artificial intelligence
Statistics
Probability and Uncertainty

business
computer
Zdroj: Journal of Computational and Graphical Statistics. 30:1181-1196
ISSN: 1537-2715
1061-8600
Popis: Regression models for supervised learning problems with a continuous response are commonly understood as models for the conditional mean of the response given predictors. This notion is simple and ...
Databáze: OpenAIRE