Relations of a planar domains bounded by hyperbolas with families of holomorphic functions

Autor: Stanisława Kanas, Ali Ebadian, Vali Soltani Masih
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-14 (2019)
DOI: 10.1186/s13660-019-2190-8
Popis: We consider a family of analytic and normalized functions with the property that $zf'(z)/f(z)$ z f ′ ( z ) / f ( z ) (or $1+zf''(z)/f'(z)$ 1 + z f ″ ( z ) / f ′ ( z ) ) lies in a domain bounded by a right branch of a hyperbola $\rho =\rho (s)= ( 2 \cos \frac{\varphi }{s} )^{-s}$ ρ = ρ ( s ) = ( 2 cos φ s ) − s , where $0< s\le 1$ 0 < s ≤ 1 and $|\varphi | | φ | < ( π s ) / 2 . A comprehensive characteristic of that families and relations with the well known families of univalent functions are presented. Some relevant examples are indicated.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje