Peptide growth factor cross-talk with the estrogen receptor requires the A/B domain and occurs independently of protein kinase C or estradiol
Autor: | John A. McLachlan, Kenneth S. Korach, Maria Inês Fernandes Pimentel, M G Parker, Diane M. Ignar-Trowbridge |
---|---|
Rok vydání: | 1996 |
Předmět: |
medicine.medical_specialty
TGF alpha Transcription Genetic medicine.medical_treatment Molecular Sequence Data 8-Bromo Cyclic Adenosine Monophosphate Estrogen receptor CHO Cells Biology Endocrinology Epidermal growth factor Cricetinae Internal medicine Tumor Cells Cultured medicine Animals Humans Insulin-Like Growth Factor I Protein Kinase C R-SMAD Binding Sites Base Sequence Epidermal Growth Factor Estradiol Activator (genetics) Growth factor Transforming Growth Factor alpha TGF beta receptor 2 Receptors Estrogen Tetradecanoylphorbol Acetate Estrogen receptor alpha Cell Division hormones hormone substitutes and hormone antagonists |
Zdroj: | Endocrinology. 137:1735-1744 |
ISSN: | 1945-7170 0013-7227 |
DOI: | 10.1210/endo.137.5.8612509 |
Popis: | Modulation of steroid receptor-dependent transcription by extra- cellular ligands represents a novel mechanism of steroid receptor regulation. We have assessed the effects of epidermal growth factor (EGF), transforming growth factor-alpha (TGF alpha), and insulin-like growth factor I (IGF-I) on transcription from consensus estrogen response elements (ERE) in estrogen receptor (ER)-positive BG-1 human ovarian adenocarcinoma calls. EGF, TGF alpha, IGF-I, and estradiol (E2) enhanced transcription in a dose-dependent manner using either a strong or a minimal promoter, and ICI 164,384, a specific ER antagonist, inhibited these responses. Combinations of E2 with TGF alpha or IGF-I induced synergistic activation of transcription from an ERE, whereas as additive response was observed with combinations of IGF-I and TGF alpha of EGF. Tetradecanoyl 12-phorbol 13-acetate (TPA), a protein kinase C (PKC) activator, stimulated ERE-mediated transcription, and this effect was inhibited by ICI 164,384. Bisindolylmaleimide, a relatively specific inhibitor of PKC, completely antagonized TPA-induced transcription, but did not affect the response to TGF alpha, IGF-I, or E2. The combination of TPA with E2 in transcriptional synergism was inhibited by ICI 164,384; conversely, the combination of TPA with either TGF alpha of IGF-I elicited a response only equal to the maximal TPA response. Thus, peptide growth factors elicit ER-dependent transcription independently of PFC; however, there may be a common mechanistic component, as saturation of response was observed. Finally, activation of ERE-dependent transcription in Chinese hamster ovary cells by IGF-I was observed in the presence of a mutant receptor that lacks estrogen-binding activity. The effect of both IGF-I and E2 were dependent on the ability of the ER to bind to DNA. IGF-I elicited only weak transcriptional activation in the presence of a deletion mutant that lacked the entire A/B domain; however, synergism between IGF-I and E2 was observed with this mutant. Therefore, ligand-independent activation of ER-dependent transcription by IGF-I is predominantly mediated through activation function I by a mechanism distinct from that of E2. |
Databáze: | OpenAIRE |
Externí odkaz: |