Uniformity in Mordell–Lang for curves

Autor: Philipp Habegger, Vesselin Dimitrov, Ziyang Gao
Přispěvatelé: Department of Mathematics [University of Toronto], University of Toronto, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Basel (Unibas)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Annals of Mathematics
Annals of Mathematics, Princeton University, Department of Mathematics, 2021, 194 (1), pp.237-298. ⟨10.4007/annals.2021.194.1.4⟩
ISSN: 0003-486X
Popis: International audience; Consider a smooth, geometrically irreducible, projective curve of genus g ≥ 2 defined over a number field of degree d ≥ 1. It has at most finitely many rational points by the Mordell Conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of g, d, and the Mordell-Weil rank of the curve's Jacobian, thereby answering in the affirmative a question of Mazur. In addition we obtain uniform bounds, in g and d, for the number of geometric torsion points of the Jacobian which lie in the image of an Abel-Jacobi map. Both estimates generalize our previous work for 1-parameter families. Our proof uses Vojta's approach to the Mordell Conjecture, and the key new ingredient is the generalization of a height inequality due to the second-and third-named authors.
Databáze: OpenAIRE