Matrix mappings and norms on the absolute Cesaro and weighted spaces
Autor: | G. Canan Hazar Güleç, Mehmet Ali Sarıgöl |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
High Energy Physics::Phenomenology 010102 general mathematics 010103 numerical & computational mathematics 01 natural sciences Matrix (mathematics) Absolute summability matrix operators BK spaces norms Mathematics (miscellaneous) Absolute (philosophy) High Energy Physics::Experiment 0101 mathematics Matrix operator Absolute summability matrix operators BK spaces norms Mathematics |
Zdroj: | Quaestiones Mathematicae; Vol 43, No 1 (2020); 117-130 |
ISSN: | 1727-933X 1607-3606 |
DOI: | 10.2989/16073606.2019.1623932 |
Popis: | In this paper, for alpha > -1 and k >= 1; we characterize the classes of all infinite matrices (vertical bar C alpha vertical bar(k), vertical bar(N) over bar (u)(p)vertical bar), (vertical bar C-alpha vertical bar, vertical bar(N) over bar (u)(p)vertical bar(k), vertical bar C-alpha vertical bar and (vertical bar(N) over bar (u)(p)vertical bar, vertical bar C-alpha vertical bar(k)), where the absolute spaces vertical bar C-alpha vertical bar(k) vertical bar(N) over bar (u)(p)vertical bar(k) are defined by Sarlgol [22 - 24]. Also we obtain estimates for the norms of bounded linear operators corresponding to matrices in these classes. So not only some problems are solved but also some well known results of Mehdi [12], Mazhar [11], Mohapatra and Das [13] and Sarigol [22] are generalized. |
Databáze: | OpenAIRE |
Externí odkaz: |